skip to main content


Search for: All records

Creators/Authors contains: "Hawkins, Linnia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Climate change projections provided by global climate models (GCM) are generally too coarse for local and regional applications. Local and regional climate change impact studies therefore use downscaled datasets. While there are studies that evaluate downscaling methodologies, there is no study comparing the downscaled datasets that are actually distributed and used in climate change impact studies, and there is no guidance for selecting a published downscaled dataset. We compare five widely used statistically downscaled climate change projection datasets that cover the conterminous USA (CONUS): ClimateNA, LOCA, MACAv2-LIVNEH, MACAv2-METDATA, and NEX-DCP30. All of the datasets are derived from CMIP5 GCMs and are publicly distributed. The five datasets generally have good agreement across CONUS for Representative Concentration Pathways (RCP) 4.5 and 8.5, although the agreement among the datasets vary greatly depending on the GCM, and there are many localized areas of sharp disagreements. Areas of higher dataset disagreement emerge over time, and their importance relative to differences among GCMs is comparable between RCP4.5 and RCP8.5. Dataset disagreement displays distinct regional patterns, with greater disagreement in △Tmax and △Tmin in the interior West and in the North, and disagreement in △P in California and the Southeast. LOCA and ClimateNA are often the outlier dataset, while the seasonal timing of ClimateNA is somewhat shifted from the others. To easily identify regional study areas with high disagreement, we generated maps of dataset disagreement aggregated to states, ecoregions, watersheds, and forests. Climate change assessment studies can use the maps to evaluate and select one or more downscaled datasets for their study area.

     
    more » « less
  2. Understanding and predicting the relationship between leaf temperature ( T leaf ) and air temperature ( T air ) is essential for projecting responses to a warming climate, as studies suggest that many forests are near thermal thresholds for carbon uptake. Based on leaf measurements, the limited leaf homeothermy hypothesis argues that daytime T leaf is maintained near photosynthetic temperature optima and below damaging temperature thresholds. Specifically, leaves should cool below T air at higher temperatures (i.e., > ∼25–30°C) leading to slopes <1 in T leaf / T air relationships and substantial carbon uptake when leaves are cooler than air. This hypothesis implies that climate warming will be mitigated by a compensatory leaf cooling response. A key uncertainty is understanding whether such thermoregulatory behavior occurs in natural forest canopies. We present an unprecedented set of growing season canopy-level leaf temperature ( T can ) data measured with thermal imaging at multiple well-instrumented forest sites in North and Central America. Our data do not support the limited homeothermy hypothesis: canopy leaves are warmer than air during most of the day and only cool below air in mid to late afternoon, leading to T can / T air slopes >1 and hysteretic behavior. We find that the majority of ecosystem photosynthesis occurs when canopy leaves are warmer than air. Using energy balance and physiological modeling, we show that key leaf traits influence leaf-air coupling and ultimately the T can / T air relationship. Canopy structure also plays an important role in T can dynamics. Future climate warming is likely to lead to even greater T can , with attendant impacts on forest carbon cycling and mortality risk. 
    more » « less
  3. Abstract

    Extreme wind‐driven autumn wildfires are hazardous to life and property, due to their rapid rate of spread. Recent catastrophic autumn wildfires in the western United States co‐occurred with record‐ or near‐record autumn fire weather indices that are a byproduct of extreme fuel dryness and strong offshore dry winds. Here, we use a formal, probabilistic, extreme event attribution analysis to investigate the anthropogenic influence on extreme autumn fire weather in 2017 and 2018. We show that while present‐day anthropogenic climate change has slightly decreased the prevalence of strong offshore downslope winds, it has increased the likelihood of extreme fire weather indices by 40% in areas where recent autumn wind‐driven fires have occurred in northern California and Oregon. The increase was primarily through increased autumn fuel aridity and warmer temperatures during dry wind events. These findings illustrate that anthropogenic climate change is exacerbating autumn fire weather extremes that contribute to high‐impact catastrophic fires in populated regions of the western US.

     
    more » « less
  4. Abstract

    Mechanistic representations of biogeochemical processes in ecosystem models are rapidly advancing, requiring advancements in model evaluation approaches. Here we quantify multiple aspects of model functional performance to evaluate improved process representations in ecosystem models. We compare semi‐empirical stomatal models with hydraulic constraints against more mechanistic representations of stomatal and hydraulic functioning at a semi‐arid pine site using a suite of metrics and analytical tools. We find that models generally perform similarly under unstressed conditions, but performance diverges under atmospheric and soil drought. The more empirical models better capture synergistic information flows between soil water potential and vapor pressure deficit to transpiration, while the more mechanistic models are overly deterministic. Although models can be parameterized to yield similar functional performance, alternate parameterizations could not overcome structural model constraints that underestimate the unique information contained in soil water potential about transpiration. Additionally, both multilayer canopy and big‐leaf models were unable to capture the magnitude of canopy temperature divergence from air temperature, and we demonstrate that errors in leaf temperature can propagate to considerable error in simulated transpiration. This study demonstrates the value of merging underutilized observational data streams with emerging analytical tools to characterize ecosystem function and discriminate among model process representations.

     
    more » « less
  5. Summary

    Canopy temperatureTcanis a key driver of plant function that emerges as a result of interacting biotic and abiotic processes and properties. However, understanding controls onTcanand forecasting canopy responses to weather extremes and climate change are difficult due to sparse measurements ofTcanat appropriate spatial and temporal scales. Burgeoning observations ofTcanfrom thermal cameras enable evaluation of energy budget theory and better understanding of how environmental controls, leaf traits and canopy structure influence temperature patterns. The canopy scale is relevant for connecting to remote sensing and testing biosphere model predictions. We anticipate that future breakthroughs in understanding of ecosystem responses to climate change will result from multiscale observations ofTcanacross a range of ecosystems.

     
    more » « less